On the Best Sobolev Inequality
نویسندگان
چکیده
We prove that the best constant in the Sobolev inequality (WI,” c Lp* with $= f i and 1 c p < n) is achieved on compact Riemannian manifolds, or only complete under some hypotheses. We also establish stronger inequalities where the norms are to some exponent which seems optimal. 0 Elsevier, Paris
منابع مشابه
Logarithmic Sobolev Trace Inequality
A logarithmic Sobolev trace inequality is derived. Bounds on the best constant for this inequality from above and below are investigated using the sharp Sobolev inequality and the sharp logarithmic Sobolev inequality. Logarithmic Sobolev inequalities capture the spirit of classical Sobolev inequalities with the logarithm function replacing powers, and they can be considered as limiting cases of...
متن کاملGlobal Poincaré Inequalities on the Heisenberg Group and Applications
Let f be in the localized nonisotropic Sobolev space W 1,p loc (H ) on the n-dimensional Heisenberg group H = C × R, where 1 ≤ p < Q and Q = 2n + 2 is the homogeneous dimension of H. Suppose that the subelliptic gradient is gloablly L integrable, i.e., Hn |∇Hnf |pdu is finite. We prove a Poincaré inequality for f on the entire space H. Using this inequality we prove that the function f subtract...
متن کاملOn the Extremal Functions of Sobolev-poincaré Inequality
where ua = 1 vol(Mn) ∫ Mn u, p∗ = np/(n − p) is the Sobolev conjugate of p. This inequality can be proved by combining Sobolev inequality with Poincaré inequality, see, for example, Hebey’s book [8]. In this paper we are interested in the estimates of the best constant and the existence of extremal functions to the above inequality. Analytically these are naturally motivated questions. On the o...
متن کاملExtremals for the Sobolev Inequality on the Seven Dimensional Quaternionic Heisenberg Group and the Quaternionic Contact Yamabe Problem
A complete solution to the quaternionic contact Yamabe problem on the seven dimensional sphere is given. Extremals for the Sobolev inequality on the seven dimensional Hesenberg group are explicitly described and the best constant in the L Folland-Stein embedding theorem is determined.
متن کاملBest Constant in Sobolev Inequality
The equality sign holds in (1) i] u has the Jorm: (3) u(x) = [a + btxI,~',-'] 1-~1~ , where Ix[ = (x~ @ ...-~x~) 1⁄2 and a, b are positive constants. Sobolev inequalities, also called Sobolev imbedding theorems, are very popular among writers in part ial differential equations or in the calculus of variations, and have been investigated by a great number of authors. Nevertheless there is a ques...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999